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The sequential function specification method proposed first by
Beck is considered as one of the most efficient methods for the
inverse heat conduction problem (IHCP) which is extremely ill-posed
and time-dependent. This method determines an “inverse solution”
advancing in a sequential fashion in time. The values estimated at
any given time depend on the solution obtained previously. The
main question connected with this method is the stability; i.e., the
cumulative error in the solution must remain bounded at all time.
Since the first paper of Beck in 1970, few theoretical stability analy-
ses have been studied in the literature. The aim of this paper is to
find the conditions under which this method is stable irrespective
of the data measurements. For a 1D linear IHCP, we try to construct
a sequence

X =1,
(1

X = E a1 X, j=2,

=1

such that the coefficients «; are independent of the data measured
and the convergence of the series > | Xi| guarantees the stability
ofthe method. In other words, we need to find an adequate condition
on a; such that 2., | X is convergent, implying that the method is
stable. The values of «; depend on the discretization size h of the
function to be determined g(t) and the sliding time horizon (or future
time interval) 7 of the method. The range of values of h and rwhich
give the values of ; such that the series 2., |X] is convergent is
established numerically. Under the stability condition, an error esti-
mation of the Beck’s method is derived. The approach presented
could be also applied to multidimensional IHCPs, in which the
coefficients «; and X; are no longer scalar but become square
matrices. © 1996 Academic Press, Inc.

1. INTRODUCTION

The determination of surface temperature and/or heat flux
from an interior measurement of temperature is referred to as
the inverse heat conduction problem and is well known to be
ill-posed. To stabilize the numerical inverse solution, various
methods have been developed. For example, Tikhonov’s regu-
larization is used in [5, 8]. A gradient iterative regularization
method is proposed in [1]. A space marching method is sug-
gested in [9]. A mollification method is proposed by Murio

[11]. The sequentia function specification method or future
temperature information method is developed in Beck [2].

Inan IHCP (inverse heat conduction problem), where afunc-
tion q(t) is to be estimated from the observed data z(t), the
observed data z(t) lags behind q(t) and is relatively damped.
Since Beck’s SFSM (sequential function specification method)
takes this behavior well into account, this method turns out to
be an efficient one for this family of problems. The SFSM is
asequential least-squares method which estimates the unknown
time-dependent function one value a a time, in contrast to
most other methods which try to obtain all the components
simultaneously. The SFSM has been widely applied to different
kinds of IHCPs. For example, it has been used in phase change
problemsto identify theinterface position [4] and also to control
the interface motion [14]. The SFSM has proved quite efficient
and stable, but however, the stability obtained for this method
depends on the given data z(t). Different extensions of the
method have been developed. In [3] the SFSM is combined
with the Tikhonov regularization. In [6] an adaptive method
has been developed. Despite the performance of the method in
solving IHCPs and the various algorithmic developments it has
undergone, to the knowledge of the authors there does not exist
a rigorous and precise analysis of the stability of the SFSM.
Very recently, some efforts in this direction have been made
by Reinhardt [12]. In this paper, we try to analyze the stability
of thismethod with referenceto alinear one-dimensional IHCP.

This paper is organized as follows. In Section 2, we give a
new formulation for Beck’s method which forms the basis
for our stability analysis. In Section 3, we derive a stability
conditions and an error estimation. In Section 4, we study
numerically the stability range of the parameters h and 7. Fi-
nally, sometheoretical conditions of stability on the coefficients
«; are discussed in the Appendix A.

2. SEQUENTIAL FUNCTION SPECIFICATION METHOD

In this section, we derive anew formulation of Beck’s SFSM
for a one-dimensional linear IHCP. This formulation is an ex-
plicit recursive algorithm and will be used for the stability
analysisin the next sections. A 1D linear IHCP with an initial
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condition of uniform zero temperature involves the solution of
convolution-type Volterra integral equations of the first kind,

[} ¢/(t=9a(9) ds = =11, 2

by using Duhamel’s theorem, where (s) is the function to be
identified, z(t) is the observation data, and ¢'(t) is the time
derivative of the responsefunction ¢(t). Thefunction ¢(t) could
be the temperature or the flux on the boundary of observation.
It also corresponds to the z(t) when q(t) is a unit step function
x(t) defined as

X=0

1,
x(t) = { 0 x<o. ©)

This problem isill-posed and is equivalent to the inversion of
the convolution mapping

d: q(t) € L0, +0) > ﬁ) ¢'(t — 9)g(s) ds € L0, + ). (4)

The SFSM gives an ‘‘inverse solution’’ to the problem (2)
by minimizing a sequential least-squares problems

3= @@ - 20) o 5)

~1)h

fori =1,2, 3,...,where h = 7is the discretization size of
g(t) and the parameter 7 is caled *‘diding time horizon."”’

For each sequence i, the values of ®(q)(t) in the interval
[(i = Dh, (i — )h + 7[ depend not only on the values of q(t)
in the same interval [(i — 1)h, (i — D)h + 7[ but aso on the
values of q(t) inthe previousinterval [0, (i — 1)h[. For asought
function q(t) discretized using intervals of size h, we have

PQ)(t+ (i — h) = IZ on(t + (i — Dh)g
= (6)

+ [ @'t —9as+ ( —h) ds,

with ¢, ()= ¢(t) — ¢(t — h) (which is the response subjected
to xu(t) = x(t) — x(t — h)). Inthe origina procedure of Beck,
the function q(t) was taken to be a constant g, over the interval
[(i — Dh, (i — )h + [ of length 7. The values of q(t) in the
interval [0, (i — 1)h[ are known from the calculations of the
preceding sequences | < i and we estimate a specific function
q(t) = g intheinterval [(i — 1)h, (i — 1)h + 7[ by minimizing

3@ = [ @@ — 20y o
(7)
= fo (@)t + (i — 1h) — z(t + (i — Dh))?dt.

Then we have the minimizing solution to the problem (5) or
(7) of the form

a = (1), (1) %o (D), 2(D)20, (8

where
2(t) =zt + (i — 1h) - 21 én(t + (i — )h)q;. ©)

The value obtained of ¢ is used as the value of q(t) only in
theinterval [(i — 1)h, ih[, and the value of q(t) in [ih, 7[ needs
to be computed in the next sequence. In asequence by sequence
manner, we obtain the values of q(t) in the al interval [0, .
In summary,

THeorem 2.1. the Beck's inverse solution to Eq. (2)

B: z(t) = q(t) = >, gt — (i — Dh) (10)
i=1
is determined by the algorithm
0= 0,
i-1
G=8+ a g, i=2 (11)
j=1
where the coefficients «;, & are determined from
o = —y{P(t), Pt + (i — D))2e.r, (12)
S=vy{pM),z(t + (i — 1) H)>L2(0,7) (13)
and the weighting coefficient -y is defined as
Y = (D), H(1) %0 (14)

for a given h and 7. Moreover, the above algorithm could be
reformulated as

= E Xij+165, (15)
=1
where the coefficients X; are computed by using
Xl = 1,
i-1 (16)
Xi=2, a1 X, 1=2
=1

If the exact sought parameter q(t) is a constant G in each
interval [(i — Dh,ih[ and the observation z(t) = ®(q)(t), we
have
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G- =&

i1 . 17)
g—-—Gg=g¢&+ 2 (g — 7)), 1=2

-1

and
a—G = Xje»
i=1

where g; arethe errorsintroduced in each sequence of identifi-
cation

&=y <0, [, ¢t~ s+ (i — D) ds>6 — G-

Proof. Substituting for the function z(t) from (9) into Eq.
(8) and taking (14) into consideration, we obtain the formu-
lae (12).

Now from (11), we deduce Eq. (15) with coefficients X
determined from (16) by the induction principle. It is easy to
check that (15) is true when i = 1 from (11). If we assume
(15) is true for al i = I, it remains to show that Eq. (15) is
truefori =1+ 1.

From (11) by settingi = | + 1, we have

|
O+1= 01+ 2 12-i0. (20)

=1

Substituting the values of ¢ with j < | from (15) into the above
equation, we obtain

| i
Q1=+ 2 Qo (E Xjk+15k>
= k=1

D (21)
=0+ Z E 02— K16k
=1 k=1
Permuting the index | with k, we have
| |
Q1=+ Z E 02 K-k 16k
k=1 j=k
‘ (22)
| |
=041t E (E 04|+21Xjk+1>5k.
k=1 \j=k
from which by settingj = j — k + 1 we obtain
| I—k+1
Q1=+ 2 ( 2 Ul|+3jkxj>5k- (23)
k=1 \ j=1
Taking into account (16) withi =1 — k + 2, wefinally obtain
| 1+1
O+1= 01+ 2 (Ki—ks2) & = E (Xi—k+2) 6. (29)
k=1 k=1

It follows that (15) istruefor all i = 1. ||

Remark 2.1. Theorem 2.1 isvalid for a full discrete IHCP
formulated as

i
E q1g=2zVi=1, (25)
i=1

which is highly ill-conditioned with a; =~ 0. For the proof of
the Theorem 2.1 in this full discrete situation, it is sufficient
to note that = rh with an integer r called the ‘*number of
future time steps”’ and replacing the whole integral by the
corresponding summation.

Remark2.2. Theorem 2.1 can be aso extended to amultidi-
mensional IHCP. A multidimensional IHCP discretized in space
could be expressed in the form of Eq. (2) as a one-dimensional
problem; however, the kernel ¢(t), the sought parameter q(t),
and the observation z(t) are not scalar functions of t any more.
For each t, ¢(t) becomes an m X n matrix, q(t) is a vector of
length n, and z(t) is a vector of length m. In such a case,
the operator <-,->7,, should be defined by < A(t), B(t)
>1209 = Jo AT(Y)B(t) dt. Consequently, vy, a;, X become n X
n matrices and & are vectors of length n. X; = 1 should be
replaced by X; = I

3. STABILITY ANALYSIS

In this section, we will study the stability property of the
mapping B defined by (11), or by (15) and (16).

THeoREM 3.1. The Beck inverse mapping B defined by (11)
islinear and if

E=2|x|<oo (26)

the mapping B is Lipschitz continuous from L*(0, +) into
L=(0, + o).

Proof. We have shown that Eq. (11) is equivaent to Eq.
(15) with the coefficients (16). The coefficients & defined as
(13) arelinear about the measurement data z(t). The coefficients
o; (12) are independent of the data z(t). Thus X; determined by
(16) are also independent of the data z(t). We see from (15)
that the values of solution g are linear with respect to 5. We
have finally that the solution g; is linear about the data z(t), i.e.,
the mapping B defined as (10) is linear.

From Eqg. (13), we have

18] = [yl | < (1), Zt + (i — )h) > 20,
= [yl lp@)llro Izt + ( — D)l
= [yl llp@)ll 0 120 l0)s

(27)

and from (15) we have



68 JUN LIU

ol = (max [5]) > |- (28)
=|=I j:l
Substituting for |&| from (27), we obtain
2plal= 190k a0ko () @9
i= i=

Letting z(t) = Z(t) — Z(t) and q(t) = Bzt — BZ in Eq. (29),
we obtain

1 __ m — 1 _ w = .
B2~ BZ. 0, = Bz ~ -, = upla o

= Ol 3 51120 — 20l

This means that the mapping B is Lipschitz continuous from
L*(0, +) into L*(0, +) as E < o and the Lipschitz con-
stant is
L =Wl lle®llioaE. (31)
From Egs. (18) and (19), it is easy to obtain an error estima-
tion as follows.

Theorem 32, If ¢'(t) = O, [G Oy < +co,
[®@®) — 2|0+ = 6, and (26), we have

IBz — Gl = Cr + L8, (32)

where

C = [ Oll=o+=E- (33
Remark 3.1. Theorem 3.1 and Theorem 3.2 are valid for

multidimensional IHCPs. The absolute value operator | - |

should be interpreted as the norm of a matrix or a vector.

4. THE STABLE REGION OF (h, v) AND NUMERICAL
RESULTS

For a specific IHCP, Beck’s solution depends essentially on
two parameters: the discretization size h and the diding time
horizon 7. In this section, we study numerically the range of
values of the parameters (h, 7) for which the Beck’s procedure
is stable. For a given value of hand 7, 0 < h = 7, we can
calculate the sequence {«;}, and then {X;}. Let us define a func-
tion E as

E(r, h) = 2 X). (34)

From Theorem 3.1, we know that the Beck’s solution is stable

0.9

o) 0.5

FIG. 1. The response function ¢(t) computed with a discretization Ax =
2%and At = 270,

when E(7, h) < + and is unstable when E(r, h) = +. The
function could be used as an indication of stability for the
Beck’s method.

For the numerical calculations, we consider a 1D hesat con-
duction problem in a slab with constant thermal properties. The
dimensionless governing equation is

2
IT_9T o<x<1t>0, (35)
ot ox
with initial condition
T(x, 0) = 0. (36)

The temperature and flux are assumed known at the location
X =1

aT(L,t)

“ox Z(t) (37)
T(1,t) = 0. (38)
It is desired to predict the flux at the location x = O:
aT(O,t)
o = o (39)

The inverse heat conduction problem considered involves de-
termining the heat flux q(t) at x = 0 from the given data z(t).

In fact, the mapping ®:q(t) — z(t) = aT(1, t)/ox is well
determined by solving the direct problem represented by Egs.
(35), (36), (38), (39) and then we have Eq. (2). We use simple
explicit finite difference method to solve Egs. (35), (36), (38),
(39) with At = 272 and Ax = 2% The numerical solution to
(1), the heat flux response of a body initialy at zero tempera-
ture and subjected to a heat flux in the form of a unit step
function x(t) defined in Eq. (3), is shown in Fig. 1. We can
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FIG. 2. Contours of E(r, h) on 7 — h plane.

see from the figure that for small t, ¢(t) is nearly zero. It
then increases rapidly and finally attains a constant value with
increasing t. Now, we compute numerically the values of E(r,
h) at al the discrete pointsh = mAt and 7 = rAt in the domain
0 < h= 7= 05usng Egs. (12), (14), (16), and (34). The
function E(7, h) is computed for a sample of 2048 values of h
and 2048 values of 7 in the region 0 < h = 7 = 0.5. We
consider the domain Qs = {(, h)|E(r, h) < E,} as a stable
domain and the domain Q, = {(r, h)|E(r, h) = E.} as an
unstable domain, where E,, is a numerical representation of the
mathematical infinity (+c0) in Eq. (26). When E,, is sufficiently
large, the Q) and (), do not vary with E,,. The behavior of E(r,
h) is very well represented by the contours of constant E in
the (7, h) plane, shown in Fig. 2. It can be seen that the contours
of E = 10°, 10°, 10" nearly coincide with one another, indicating
that we could choose, for example, E, = 10° to represent
numerical infinity, in order to identify the stable and unstable
domains. Figure 3 presents the domains () and (), separated

0.3 T T T T Y

0.2 |- -

hoas r<h =

nstable -1
region

0.1 -

0.05 - stable region -

0 1 1 1 | |
0 0.05 0.1 0.15 0.2 0.25 0.3
T

FIG.3. The stable and unstable range of the parameters (r, h) obtained nu-
merically.
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FIG. 4. Stability limit h,, at various values of 7.

by the contour of E = E,, = 10°. These domains ), and (),
are simple connected domains.

We can also see from Fig. 3 that the SFSM s unstable for
even very small values of h when 7 = 0.01. The stability
behavior for smaller values of ~needsamore detailed investiga-
tion; but however, we could remark that smaller values of =
would demand prohibitively small values of h for stability. In
the range 0.01 < 7 < 0.247, we can define an upper limit hy,,
such that 0 < h,, < 7, wheretheregion 0 < h < h,, isstable,
and h = h,, isunstable. For r = 0.247, the procedure is stable
for al values of hintheregion0 < h = 7.

Figure 4 presents E, regarded as a function of h, for various
values of 7, and Fig. 5 presents the curve of E versus 7 for
different hvalues. Thefunction E(, h) isincreasing with respect
to h and decreasing with respect to . From Fig. 4, we see that
the method becomes unstable as h increases beyond a certain
upper limit h,, and that this upper limit h,, is a function of
7. At larger 7, the value of h, is higher. Figure 5 presents the
converse: for each value of h, there exists a lower limit of =

50 T T

40
35 |-
30 |-

20 |-
15
10 =

| 1
0 0.05 0.1

0.15 0.2

FIG. 5. Stability limit , for various values of h.
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FIG. 6. The behavior of the series {X;} in case 1 (h = 0.0625, 7 = 0.125,
and E = 4.25).

(Twin), below which the procedure is unstable. This lower limit
Twmin INCreases for larger values of h.

The above numerical results are obtained by using the sum
of the 1000 terms of the series i1 [X|| in Eq. (34), i.e, by
approximating the -, [X;| with =i [X||. A simple necessary
condition for the convergence of 2., |X| that X, — 0 as
i — o could be used. To study in more detail the convergent
or divergent behavior of the series expansion =, X, we look
at the evolution of the series { X} and {«;} with respect to the
index i of sequence. We choose the following three cases:

1. h = 0.0625 7= 0.125 in the stable region (s where
the value of E is relatively small;

2. h =025 7= 0.25in the stable region (s where the
value of E isrelatively large;

3. h=0.03, 7= 0.06 in the unstable region €.

The evolutions of the series {X;} corresponding the three cases
are respectively plotted in Figs. 6-8. We see that X; converges

L5 T T T
h=026, 71=026 —

0.5 -

X; 0 AAAAAAA

YYVYYVYY

-0.5 -

15 ] ] 1
50 100 150

i

(=]

200

FIG. 7. The behavior of the series {X;} in case 2 (h = 0.26, = = 0.26,
and E = 28.7).
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FIG. 8. The behavior of the series {X;} in case 3 (h = 0.03, 7 = 0.06).

rapidly to zero in case 1; it converges slowly to zero in case
2; it diverges in case 3. A condition such as |X| < & and/or
[Xi — Xi-1] < & may be used as a stop test of convergence in
the computation of the expansion PN |Xi|. We have compared
this condition using ¢ = 1072 with the method using the sum
of 1000 terms of series 2; IX{|. The results obtained are
almost identical.

The series { s} corresponding to the above three cases are
shown in Fig. 9. In any case, «; converges to zero asi tends to
o, Thevaluesof thefirst few termsof { o} play an essential role
to get aconvergent or adivergent series{ X;}. Thevaluesof { «;}
in unstable cases have often a larger magnitude than those
in stable cases, but however, thisis not alwaystrue. We remark
also that the sufficient conditions of stability given in Theorem
A.3 are not optimal, because the { «;} in the above stable cases
do not satisfy the conditions imposed by Theorem A.3.

5. CONCLUSIONS

A stability analysis of Beck’s sequentia function specifica-
tion method for a linear IHCP has been investigated. Under

7 T T T T T
—00625 T=0.125 £E=4.25
—0.6, =0.26, F =287 ——-
:003 7=006 —

FIG.9. Comparison of the values of the series{a;} for the three test cases.
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the stability condition, an error estimation has been obtained.
The present approach could be applied to multidimensional
IHCPs. For a 1D case, the decomposition of the parameter
domain (h, 7) into stable and unstable regions is precisely
computed numerically and some theoretical conditions on the
sequence of {a;} have been deduced. More detailed investiga-
tion about multidimensional IHCPs needs to be developed.
We hope that this study would give a new insight into the
Beck’s procedure.

APPENDIX A: SOME STABILITY CONDITIONS ON THE
COEFFICIENTS {a}

Since the coefficients { o;} are easy to compute directly from
the kernel function ¢(t), we are interested in analyzing the
property of these coefficientsthat ensuresthe stability of Beck’s
algorithm. Here we limit ourselves to one-dimensional prob-
lems(i.e., ¢(t) isascalar for each fixed t). For multidimensional
problems, more detailed investigation needs to be performed
when the kernel function ¢(t) is not a simple diagonal matrix.
The relation between {X;} and {«;} is not very ssmple and here
are the first five terms of X

X1 =1,
Xo =
Xs = as + a3, (40)
Xo = au + apas + (o + a) as,
Xs = a5 + a0y + (03 + o) s
+ (o4 + o3 + (a3 + 08) o) ,.
We will construct two power series which seems more compli-
cated than the original one; however, the advantage is that

many theoriesand algorithmsthat are well-devel oped for power
series could be applied.

THeEOREM A.1l. Let us construct two complex power series
functions with the coeffcients —«; and X:

AD=1- 22 az ! (41)
and
@ =YXz 42
we have formally that
AQI@ = 1 “3)

A necessary condition for the convergence of the series (26)
is that the series A(Z) does not converge to O in the closed
domain |7 = 1. A sufficient condition for the convergence of
the series (26) is that the series A(2) (41) has a convergence
radius p > 1 and the function A(2) has no roots in |7 = 1.

Proof. It is easy to verify that

1-A@)I@ = (22 ai21> (21 >gz’l>

| (44)
= 21 ( 1 o X)Z2 = 22 Xz 1=T@ - 1

=

Suppose that the series (26) converges, then the series I'(2) is
convergent uniformly and absolutely in the closed domain
|z = 1, since for each term of the series I'(2) we have
Xz7 = [X| (45)

for any |z = 1. Consequently, |T'(2)| < o in the al domain
|2 = 1. Since I'(9A(2) = 1, A(2 has no root in al domain
lzZ = 1.

Suppose now that the series A(2) has a convergence radius
p > 1, it is obvious that the function A(2) is continuous in
|2 < p. Thus, if A(2) has no rootsin |7 = 1, we can find an
& > 0 such that A(2) has no roots in |7 < 1 + &. Therefore,
A(2) isanalytic and hasnorootsin | < 1 + &, and the function
I'(2) = UA(2) is aso an analytic function in |2 < 1 + e.
It follows that the series >, Xz * converges absolutely in
the region |7 < 1 + &. Letting z = 1, we obtain that
P X < +o. 1

For the sufficient condition, the hypothesis of a convergence
radius p > 1 is expected to be avoided. Let us now consider
some particular cases.

1 awm=aanda =0Vi=3.Inthiscase, A(2) = 1 —
azand X; = o/ 1 Vi = 2. The necessary and sufficient condition
for (26) isthat || < 1, which is equivalent to that the function
A(2) hasno root in |7 = 1.

2. o=, Vi=2Inthiscase, A(2 =1— azZ/(1 - 2)in
|2 < land X = a(l + «)? Vi = 2. The necessary and
sufficient condition for (26) isthat |1 + o < 1. Indeed, this
is also that the function A(2) has no root in |4 < 1.

3. o =2(-1)",Vi=2 Wehavethat A(2 = 1 — 2/
(1+ 2 hasnorootsin|Z < 1 buthasaroot z= 1in|7 <
1. In this case, the values of X, computed from (16) is equal
to 2 for al i = 2 and the series =, |X| does not converge.

When the series A(2) has only few terms, the condition that
A(2) hasno rootsin |z =< 1 could be easily checked. In general
the series A(2) has many terms or infinite terms, the condition
of miny<; A(2) = & > 0 could be verified by using the Schur’s
algorithm [13, 7, 10]. However, the computation may not be
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as fast as to compute directly the coefficients {X }. A compara-
tive study is needed.

We are now interested in some simple but more restrictive
sufficient conditions for stability. Indeed, it is easy to proof:

Lemma A.2. Thevalues of the sequence {«;} derived from
(12) are negative and the series =, || is convergent, under
the condition that the response function ¢(t) is increasing
and bounded.

THEOREM A.3. Suppose that the power series (41) has a
convergence radius p > 1 and that «; = 0. Then, we have the
sufficient conditions for the convergence of the series (26) as

o

> e < 1, (46)
i=2
or
Ml =1, 0, #0,a;#0; (47)
i=2
or
_1<C(i SO[H]_SO Vi=2. (48)
Proof. Onthebasisof Theorem A.1, it issufficient to check

|A(2)] > 0in the closed region |7 = 1. Let |7 = 1, then

A@ = 1— 3 el

i=2

(49)

Therefore, |A(2)| > 0 when the condition (46) holds.
Let condition (47) hold. Suppose that A(2) has aroot z in

4 = 1; we have
202 az?=1 (50)
On the other hand,
‘202 azy?| = |z I}: lwzs? = é lf =1. (50
Then |z| = 1 and
gaif&z = 2; |77 (52)

Thus, the nonzero values of the complex numbers «;Z, 2 must
have the same angle. Since o, # 0 and a3 # 0, we obtain that
Z, = 1. However, A(1) = 1 means that A(2) has no roots in
I = 1.

Suppose now that the condition (48) holds. Let us look at

the power series function (1 — 2)A(2). The function has the
coefficients B, = oy — o = Owith oy = —1. It iseasy to
check that 2, |8 = 1. In the same ways as for the condition
(47), we can show that the (1 — 2)A(2) has only root z = 1.
Note that A(1) = 1; it follows that A(2 has no roots in
lZ2=1 1

The following examples show that the conditions a, # O,
a3 # 0in (47) and o # —1 in (48) are necessary.

Exampe 1. Leta, = —1/2, a5 = 0, ay = —1/2, and o
= 0 Vi = 5, we have that 2,_, || = 1, but, however, the
function

AD=1+22+ 22 (53)

hasaroot z= —1.

ExampE 2. Let o, = —1, a3 = —1/2, oy, = —1/2, and
o; = 0 Vi = 5; we have that the sequence «; is increasing;
however, function

A=1+z+212+ 22 (4)
hasaroot z= —1.

APPENDIX B: NOMENCLATURE

q(t): unknown function to be estimated
Z(t): observed measurement data

d(): response function

h: time discretization step for q(t)

T length of dliding time horizon
E(r, h): indication function of stability

v: weighting value determined by ¢(t)
o sequence define by eq. (12)

S weighted observation data

Xi: sequence define by eq. (16)

Pinex: upper bound of h for stability
Tonin: lower bound of = for stability

z complex variable

I'(2: power series defined by (42)

A®D): power series defined by (41)

r: ratio 7/h, i.e., number of future informations

E.: numerical infinity

i index of sequence in the SFSMs

o: direct mapping to be inversed

x(): unit step function

B: Beck inverse solution mapping

Q. stable domain

Q: unstable domain.
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