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[11]. The sequential function specification method or future
temperature information method is developed in Beck [2].The sequential function specification method proposed first by

Beck is considered as one of the most efficient methods for the In an IHCP (inverse heat conduction problem), where a func-
inverse heat conduction problem (IHCP) which is extremely ill-posed tion q(t) is to be estimated from the observed data z(t), the
and time-dependent. This method determines an ‘‘inverse solution’’ observed data z(t) lags behind q(t) and is relatively damped.
advancing in a sequential fashion in time. The values estimated at

Since Beck’s SFSM (sequential function specification method)any given time depend on the solution obtained previously. The
takes this behavior well into account, this method turns out tomain question connected with this method is the stability; i.e., the

cumulative error in the solution must remain bounded at all time. be an efficient one for this family of problems. The SFSM is
Since the first paper of Beck in 1970, few theoretical stability analy- a sequential least-squares method which estimates the unknown
ses have been studied in the literature. The aim of this paper is to time-dependent function one value at a time, in contrast to
find the conditions under which this method is stable irrespective

most other methods which try to obtain all the componentsof the data measurements. For a 1D linear IHCP, we try to construct
simultaneously. The SFSM has been widely applied to differenta sequence
kinds of IHCPs. For example, it has been used in phase change
problems to identify the interface position [4] and also to control

X1 5 1,
(1) the interface motion [14]. The SFSM has proved quite efficient

Xj 5 Oj21

l51
aj2l11Xl , j $ 2, and stable, but however, the stability obtained for this method

depends on the given data z(t). Different extensions of the
method have been developed. In [3] the SFSM is combined

such that the coefficients ai are independent of the data measured with the Tikhonov regularization. In [6] an adaptive method
and the convergence of the series oy

i51 uXiu guarantees the stability has been developed. Despite the performance of the method in
of the method. In other words, we need to find an adequate condition

solving IHCPs and the various algorithmic developments it hason ai such that oy
i51 uXiu is convergent, implying that the method is

undergone, to the knowledge of the authors there does not existstable. The values of ai depend on the discretization size h of the
function to be determined q(t) and the sliding time horizon (or future a rigorous and precise analysis of the stability of the SFSM.
time interval) t of the method. The range of values of h and t which Very recently, some efforts in this direction have been made
give the values of ai such that the series oy

i51 uXiu is convergent is by Reinhardt [12]. In this paper, we try to analyze the stability
established numerically. Under the stability condition, an error esti-

of this method with reference to a linear one-dimensional IHCP.mation of the Beck’s method is derived. The approach presented
This paper is organized as follows. In Section 2, we give acould be also applied to multidimensional IHCPs, in which the

coefficients ai and Xi are no longer scalar but become square new formulation for Beck’s method which forms the basis
matrices. Q 1996 Academic Press, Inc. for our stability analysis. In Section 3, we derive a stability

conditions and an error estimation. In Section 4, we study
numerically the stability range of the parameters h and t. Fi-

1. INTRODUCTION nally, some theoretical conditions of stability on the coefficients
ai are discussed in the Appendix A.

The determination of surface temperature and/or heat flux
from an interior measurement of temperature is referred to as
the inverse heat conduction problem and is well known to be 2. SEQUENTIAL FUNCTION SPECIFICATION METHOD
ill-posed. To stabilize the numerical inverse solution, various
methods have been developed. For example, Tikhonov’s regu- In this section, we derive a new formulation of Beck’s SFSM

for a one-dimensional linear IHCP. This formulation is an ex-larization is used in [5, 8]. A gradient iterative regularization
method is proposed in [1]. A space marching method is sug- plicit recursive algorithm and will be used for the stability

analysis in the next sections. A 1D linear IHCP with an initialgested in [9]. A mollification method is proposed by Murio
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condition of uniform zero temperature involves the solution of Then we have the minimizing solution to the problem (5) or
(7) of the formconvolution-type Volterra integral equations of the first kind,

qi 5 kf(t), f(t)l21
L2(0,t ) kf(t), ẑi(t)lL2(0,t ) , (8)Et

0
f9(t 2 s)q(s) ds 5 z(t), (2)

where
by using Duhamel’s theorem, where q(s) is the function to be
identified, z(t) is the observation data, and f9(t) is the time
derivative of the response function f(t). The function f(t) could ẑi(t) 5 z(t 1 (i 2 1)h) 2 Oi21

j51

fh(t 1 (i 2 j)h)qj . (9)
be the temperature or the flux on the boundary of observation.
It also corresponds to the z(t) when q(t) is a unit step function

The value obtained of qi is used as the value of q(t) only inx(t) defined as
the interval [(i 2 1)h, ih[, and the value of q(t) in [ih, t [ needs
to be computed in the next sequence. In a sequence by sequence
manner, we obtain the values of q(t) in the all interval [0, y[.x(t) 5H1, x $ 0

0, x , 0.
(3)

In summary,

THEOREM 2.1. the Beck’s inverse solution to Eq. (2)
This problem is ill-posed and is equivalent to the inversion of
the convolution mapping

B : z(t) ° q(t) 5 Oy
i51

qixh(t 2 (i 2 1)h) (10)

F: q(t) [ L2(0, 1y) ° Et

0
f9(t 2 s)q(s) ds [ L2(0, 1y). (4)

is determined by the algorithm

The SFSM gives an ‘‘inverse solution’’ to the problem (2)
q1 5 d1

(11)
by minimizing a sequential least-squares problems

qi 5 di 1 Oi21

j51

ai2j11qj , i $ 2,
Ji 5 E(i21)h1t

(i21)h
(F(q)(t) 2 z(t))2 dt (5)

where the coefficients ai, di are determined from
for i 5 1, 2, 3, . . . , where h # t is the discretization size of
q(t) and the parameter t is called ‘‘sliding time horizon.’’ ai 5 2c kf(t), fh(t 1 (i 2 1)h)lL2(0,t ) , (12)

For each sequence i, the values of F(q)(t) in the interval
di 5 c kf(t), z(t 1 (i 2 1)H)lL2(0,t ) (13)[(i 2 1)h, (i 2 1)h 1 t [ depend not only on the values of q(t)

in the same interval [(i 2 1)h, (i 2 1)h 1 t [ but also on the
values of q(t) in the previous interval [0, (i 2 1)h[. For a sought and the weighting coefficient c is defined as
function q(t) discretized using intervals of size h, we have

c 5 kf(t), f(t)l21
L2(0,t ) (14)

F(q)(t 1 (i 2 1)h) 5 Oi51

j51

fh(t 1 (i 2 j)h)qj

(6) for a given h and t. Moreover, the above algorithm could be
reformulated as

1 Et

0
f9(t 2 s)q(s 1 (i 2 1)h) ds,

qi 5 Oi

j51

Xi2j11dj , (15)
with fh(t)5 f(t) 2 f(t 2 h) (which is the response subjected
to xh(t) 5 x(t) 2 x(t 2 h)). In the original procedure of Beck,
the function q(t) was taken to be a constant qi over the interval where the coefficients Xi are computed by using
[(i 2 1)h, (i 2 1)h 1 t [ of length t. The values of q(t) in the
interval [0, (i 2 1)h[ are known from the calculations of the X1 5 1,

(16)preceding sequences j , i and we estimate a specific function
q(t) 5 qi in the interval [(i 2 1)h, (i 2 1)h 1 t [ by minimizing Xi 5 Oi51

j51

ai2j11Xj , i $ 2.

Ji(q) 5 E(i21)h1t

(i21)h
(F(q)(t) 2 z(t))2 dt

(7) If the exact sought parameter q(t) is a constant qi in each
interval [(i 2 1)h,ih[ and the observation z(t) 5 F(q)(t), we

5 Et

0
(F(q)(t 1 (i 2 1)h) 2 z(t 1 (i 2 1)h))2 dt. have
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q1 2 q1 5 «1

(17)
It follows that (15) is true for all i $ 1.

Remark 2.1. Theorem 2.1 is valid for a full discrete IHCP
qi 2 qi 5 «i 1 Oi21

j51

ai2j11(qj 2 qj), i $ 2, formulated as

and Oi

j51

ai2j11qj 5 zi ; i $ 1, (25)

qi 2 qi 5 Oi

j51

Xi2j11[j ,
which is highly ill-conditioned with a1 P 0. For the proof of
the Theorem 2.1 in this full discrete situation, it is sufficient

where «i are the errors introduced in each sequence of identifi- to note that t 5 rh with an integer r called the ‘‘number of
cation future time steps’’ and replacing the whole integral by the

corresponding summation.
«i 5 c , f(t), Et

0
f9(t 2 s)q(s 1 (i 2 1)h) ds .L2(0,t) 2 qi . Remark 2.2. Theorem 2.1 can be also extended to a multidi-

mensional IHCP. A multidimensional IHCP discretized in space
Proof. Substituting for the function ẑi(t) from (9) into Eq. could be expressed in the form of Eq. (2) as a one-dimensional

(8) and taking (14) into consideration, we obtain the formu- problem; however, the kernel f(t), the sought parameter q(t),
lae (11). and the observation z(t) are not scalar functions of t any more.

Now from (11), we deduce Eq. (15) with coefficients Xi For each t, f(t) becomes an m 3 n matrix, q(t) is a vector of
determined from (16) by the induction principle. It is easy to length n, and z(t) is a vector of length m. In such a case,
check that (15) is true when i 5 1 from (11). If we assume the operator ,?,?.L2(0,t) should be defined by , A(t), B(t)
(15) is true for all i # l, it remains to show that Eq. (15) is .L2(0,t) 5 et

0 AT(t)B(t) dt. Consequently, c, ai, Xi become n 3
true for i 5 l 1 1. n matrices and di are vectors of length n. X1 5 1 should be

From (11) by setting i 5 l 1 1, we have replaced by X1 5 In3n.

3. STABILITY ANALYSISql11 5 dl11 1 Ol

j51

al122jqj. (20)

In this section, we will study the stability property of the
mapping B defined by (11), or by (15) and (16).Substituting the values of qj with j # l from (15) into the above

equation, we obtain THEOREM 3.1. The Beck inverse mapping B defined by (11)
is linear and if

ql11 5 dl11 1 Ol

j51

al122j SOj

k51

Xj2k11dkD
(21) E 5 Oy

i51

uXiu , y (26)

5 dl11 1 Ol

j51
Oj

k51

al122j Xj2k11dk .
the mapping B is Lipschitz continuous from Ly(0, 1y) into
Ly(0, 1y).Permuting the index j with k, we have

Proof. We have shown that Eq. (11) is equivalent to Eq.
(15) with the coefficients (16). The coefficients di defined asql11 5 dl11 1 Ol

k51
Ol

j5k

al122j Xj2k11dk

(22)
(13) are linear about the measurement data z(t). The coefficients
ai (12) are independent of the data z(t). Thus Xi determined by
(16) are also independent of the data z(t). We see from (15)5 dl11 1 Ol

k51
SOl

j5k

al122j Xj2k11Ddk ,
that the values of solution qi are linear with respect to di. We
have finally that the solution qi is linear about the data z(t), i.e.,

from which by setting j 5 j 2 k 1 1 we obtain the mapping B defined as (10) is linear.
From Eq. (13), we have

ql11 5 dl11 1 Ol

k51
S Ol2k11

j51

al132j2kXjDdk . (23) udiu 5 ucu u , f(t), z(t 1 (i 2 1)h) .L2(0,t)u

# ucu if(t)iL1(0,t) iz(t 1 (i 2 1)h)iLy(0,t) (27)Taking into account (16) with i 5 l 2 k 1 2, we finally obtain
# ucu if(t)iL1(0,t) iz(t)iLy(0,y),

ql11 5 dl11 1 Ol

k51

(Xl2k12)dk 5 Ol11

k51

(Xl2k12) dk . (24)
and from (15) we have
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uqiu # (max
1#j#i

udju) Oi

j51

uXju. (28)

Substituting for udiu from (27), we obtain

sup
i$1

uqiu # ucu if(t)iL1(0,t)iz(t)iLy(0,y)SOy
j51

uXjuD. (29)

Letting z(t) 5 z1(t) 2 z2(t) and q(t) 5 Bz1 2 Bz2 in Eq. (29),
we obtain

iBz1 2 Bz2iLy(0,t) 5 iB(z1 2 z2)iLy(0,t) 5 sup
i$1

uqiu
(30)

FIG. 1. The response function f(t) computed with a discretization Dx 5# ucu if(t)iL1(0,t)SOy
j51

uXjuDiz1(t) 2 z2(t)iLy(0,y). 224 and Dt 5 2210.

This means that the mapping B is Lipschitz continuous from
when E(t, h) , 1y and is unstable when E(t, h) 5 1y. TheLy(0, 1y) into Ly(0, 1y) as E , y and the Lipschitz con-
function could be used as an indication of stability for thestant is
Beck’s method.

For the numerical calculations, we consider a 1D heat con-
L 5 ucu if(t)iL1(0,t)E. (31)

duction problem in a slab with constant thermal properties. The
dimensionless governing equation is

From Eqs. (18) and (19), it is easy to obtain an error estima-
tion as follows.

T
t

5
2T
x2, 0 , x , 1, t . 0, (35)

THEOREM 3.2. If f9(t) $ 0, iq9(t)iLy(0,1y) , 1y,
iF(q)(t) 2 z(t)iLy(0,1y) # d, and (26), we have

with initial condition
iBz 2 qiLy(0,1y) # Ct 1 Ld, (32)

(36)T(x, 0) 5 0.

where
The temperature and flux are assumed known at the location
x 5 1:C 5 iq9(t)iLy(0,1y)E. (33)

Remark 3.1. Theorem 3.1 and Theorem 3.2 are valid for T(1, t)
x

5 z(t) (37)
multidimensional IHCPs. The absolute value operator u ? u
should be interpreted as the norm of a matrix or a vector. T(1, t) 5 0. (38)

4. THE STABLE REGION OF (h, t) AND NUMERICAL It is desired to predict the flux at the location x 5 0:
RESULTS

T(0, t)
x

5 q(t). (39)For a specific IHCP, Beck’s solution depends essentially on
two parameters: the discretization size h and the sliding time
horizon t. In this section, we study numerically the range of The inverse heat conduction problem considered involves de-
values of the parameters (h, t) for which the Beck’s procedure termining the heat flux q(t) at x 5 0 from the given data z(t).
is stable. For a given value of h and t, 0 , h # t, we can In fact, the mapping F : q(t) ° z(t) 5 T(1, t)/x is well
calculate the sequence haij, and then hXij. Let us define a func- determined by solving the direct problem represented by Eqs.
tion E as (35), (36), (38), (39) and then we have Eq. (2). We use simple

explicit finite difference method to solve Eqs. (35), (36), (38),
(39) with Dt 5 2212 and Dx 5 224. The numerical solution toE(t, h) 5 Oy

i51

uXiu. (34)
f(t), the heat flux response of a body initially at zero tempera-
ture and subjected to a heat flux in the form of a unit step
function x(t) defined in Eq. (3), is shown in Fig. 1. We canFrom Theorem 3.1, we know that the Beck’s solution is stable
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FIG. 2. Contours of E(t, h) on t 2 h plane. FIG. 4. Stability limit hmax at various values of t.

by the contour of E 5 Em 5 105. These domains Vs and Vusee from the figure that for small t, f(t) is nearly zero. It
are simple connected domains.then increases rapidly and finally attains a constant value with

We can also see from Fig. 3 that the SFSM is unstable forincreasing t. Now, we compute numerically the values of E(t,
even very small values of h when t # 0.01. The stabilityh) at all the discrete points h 5 mDt and t 5 rDt in the domain
behavior for smaller values of t needs a more detailed investiga-0 , h # t # 0.5 using Eqs. (12), (14), (16), and (34). The
tion; but however, we could remark that smaller values of tfunction E(t, h) is computed for a sample of 2048 values of h
would demand prohibitively small values of h for stability. Inand 2048 values of t in the region 0 , h # t # 0.5. We
the range 0.01 , t , 0.247, we can define an upper limit hmaxconsider the domain Vs 5 h(t, h)uE(t, h) , Emj as a stable
such that 0 , hmax , t, where the region 0 , h , hmax is stable,domain and the domain Vu 5 h(t, h)uE(t, h) $ Emj as an
and h $ hmax is unstable. For t $ 0.247, the procedure is stableunstable domain, where Em is a numerical representation of the
for all values of h in the region 0 , h # t.mathematical infinity (1y) in Eq. (26). When Em is sufficiently

Figure 4 presents E, regarded as a function of h, for variouslarge, the Vs and Vu do not vary with Em. The behavior of E(t,
values of t, and Fig. 5 presents the curve of E versus t forh) is very well represented by the contours of constant E in
different h values. The function E(t, h) is increasing with respectthe (t, h) plane, shown in Fig. 2. It can be seen that the contours
to h and decreasing with respect to t. From Fig. 4, we see thatof E 5 103, 105, 107 nearly coincide with one another, indicating
the method becomes unstable as h increases beyond a certainthat we could choose, for example, Em 5 105 to represent
upper limit hmax and that this upper limit hmax is a function ofnumerical infinity, in order to identify the stable and unstable
t. At larger t, the value of hmax is higher. Figure 5 presents thedomains. Figure 3 presents the domains Vs and Vu separated
converse: for each value of h, there exists a lower limit of t

FIG. 3. The stable and unstable range of the parameters (t, h) obtained nu-
merically. FIG. 5. Stability limit tmin for various values of h.
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FIG. 6. The behavior of the series hXij in case 1 (h 5 0.0625, t 5 0.125, FIG. 8. The behavior of the series hXij in case 3 (h 5 0.03, t 5 0.06).
and E 5 4.25).

rapidly to zero in case 1; it converges slowly to zero in case
2; it diverges in case 3. A condition such as uXiu , « and/or(tmin), below which the procedure is unstable. This lower limit
uXi 2 Xi21u , « may be used as a stop test of convergence intmin increases for larger values of h.
the computation of the expansion oy

i51 uXiu. We have comparedThe above numerical results are obtained by using the sum
this condition using « 5 1023 with the method using the sumof the 1000 terms of the series oy

i51 uXiu in Eq. (34), i.e., by
of 1000 terms of series Oy

i51
uXiu. The results obtained areapproximating the oy

i51 uXiu with o1000
i51 uXiu. A simple necessary

almost identical.condition for the convergence of oy
i51 uXiu that Xi R 0 as

The series {ai} corresponding to the above three cases arei R y could be used. To study in more detail the convergent
shown in Fig. 9. In any case, ai converges to zero as i tends toor divergent behavior of the series expansion oy

i51 uXiu, we look
y. The values of the first few terms of {ai} play an essential roleat the evolution of the series {Xi} and {ai} with respect to the
to get a convergent or a divergent series {Xi}. The values of {ai}index i of sequence. We choose the following three cases:
in unstable cases have often a larger magnitude than those

1. h 5 0.0625, t 5 0.125 in the stable region Vs where
in stable cases, but however, this is not always true. We remark

the value of E is relatively small;
also that the sufficient conditions of stability given in Theorem

2. h 5 0.25, t 5 0.25 in the stable region Vs where the A.3 are not optimal, because the {ai} in the above stable cases
value of E is relatively large; do not satisfy the conditions imposed by Theorem A.3.

3. h 5 0.03, t 5 0.06 in the unstable region Vu.
5. CONCLUSIONS

The evolutions of the series {Xi} corresponding the three cases
are respectively plotted in Figs. 6–8. We see that Xi converges A stability analysis of Beck’s sequential function specifica-

tion method for a linear IHCP has been investigated. Under

FIG. 7. The behavior of the series hXij in case 2 (h 5 0.26, t 5 0.26,
and E 5 28.7). FIG. 9. Comparison of the values of the series haij for the three test cases.
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the stability condition, an error estimation has been obtained. A necessary condition for the convergence of the series (26)
is that the series L(z) does not converge to 0 in the closedThe present approach could be applied to multidimensional

IHCPs. For a 1D case, the decomposition of the parameter domain uzu # 1. A sufficient condition for the convergence of
the series (26) is that the series L(z) (41) has a convergencedomain (h, t) into stable and unstable regions is precisely

computed numerically and some theoretical conditions on the radius r . 1 and the function L(z) has no roots in uzu # 1.
sequence of {ai} have been deduced. More detailed investiga-

Proof. It is easy to verify thattion about multidimensional IHCPs needs to be developed.
We hope that this study would give a new insight into the
Beck’s procedure. (1 2 L(z))G(z) 5 SOy

i52

aizi21DSOy
i51

Xizi21D
(44)

APPENDIX A: SOME STABILITY CONDITIONS ON THE
5 Oy

i51
SOi21

j51

ai2j11Xj)zi21 5 Oy
i52

Xizi21 5 G(z) 2 1.COEFFICIENTS {ai}

Since the coefficients {ai} are easy to compute directly from
Suppose that the series (26) converges, then the series G(z) isthe kernel function f(t), we are interested in analyzing the
convergent uniformly and absolutely in the closed domainproperty of these coefficients that ensures the stability of Beck’s
uzu # 1, since for each term of the series G(z) we havealgorithm. Here we limit ourselves to one-dimensional prob-

lems (i.e., f(t) is a scalar for each fixed t). For multidimensional
(45)uXizi21u # uXiuproblems, more detailed investigation needs to be performed

when the kernel function f(t) is not a simple diagonal matrix.
The relation between {Xi} and {ai} is not very simple and here for any uzu # 1. Consequently, uG(z)u , y in the all domain
are the first five terms of Xi: uzu # 1. Since G(z)L(z) 5 1, L(z) has no root in all domain

uzu # 1.
Suppose now that the series L(z) has a convergence radiusX1 5 1,

r . 1, it is obvious that the function L(z) is continuous in
X2 5 a2, uzu , r. Thus, if L(z) has no roots in uzu # 1, we can find an

« . 0 such that L(z) has no roots in uzu , 1 1 «. Therefore,X3 5 a3 1 a2
2 , (40)

L(z) is analytic and has no roots in uzu , 1 1 «, and the function
X4 5 a4 1 a2a3 1 (a3 1 a2

2) a2 , G(z) 5 1/L(z) is also an analytic function in uzu , 1 1 «.
It follows that the series oy

i51 Xizi21 converges absolutely inX5 5 a5 1 a2a4 1 (a3 1 a2
2) a3

the region uzu , 1 1 «. Letting z 5 1, we obtain that
1 (a4 1 a2a3 1 (a3 1 a2

2) a2) a2 . oy
i51 uXiu , 1y.
For the sufficient condition, the hypothesis of a convergence

radius r . 1 is expected to be avoided. Let us now considerWe will construct two power series which seems more compli-
some particular cases.cated than the original one; however, the advantage is that

many theories and algorithms that are well-developed for power 1. a2 5 a and ai 5 0 ;i $ 3. In this case, L(z) 5 1 2
series could be applied. az and Xi 5 ai21 ;i $ 2. The necessary and sufficient condition

for (26) is that uau , 1, which is equivalent to that the functionTHEOREM A.1. Let us construct two complex power series
L(z) has no root in uzu # 1.functions with the coeffcients 2ai and Xi:

2. ai 5 a, ;i $ 2. In this case, L(z) 5 1 2 az/(1 2 z) in
uzu , 1 and Xi 5 a(1 1 a)i22, ;i $ 2. The necessary and

L(z) 5 1 2 Oy
i52

aizi21 (41) sufficient condition for (26) is that u1 1 au , 1. Indeed, this
is also that the function L(z) has no root in uzu # 1.

3. ai 5 2(21)i21, ;i $ 2. We have that L(z) 5 (1 2 z)/
and

(1 1 z) has no roots in uzu , 1 but has a root z 5 1 in uzu #
1. In this case, the values of Xi computed from (16) is equal
to 2 for all i $ 2 and the series oy

i51 uXiu does not converge.G(z) 5 Oy
i51

Xizi21; (42)

When the series L(z) has only few terms, the condition that
L(z) has no roots in uzu # 1 could be easily checked. In general

we have formally that the series L(z) has many terms or infinite terms, the condition
of minuzu#1 L(z) $ « . 0 could be verified by using the Schur’s
algorithm [13, 7, 10]. However, the computation may not be(43)L(z)G(z) 5 1.
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as fast as to compute directly the coefficients hXi j. A compara- the power series function (1 2 z)L(z). The function has the
coefficients bi 5 ai21 2 ai # 0 with a1 5 21. It is easy totive study is needed.

We are now interested in some simple but more restrictive check that oy
i51 ubiu 5 1. In the same ways as for the condition

(47), we can show that the (1 2 z)L(z) has only root z 5 1.sufficient conditions for stability. Indeed, it is easy to proof:
Note that L(1) $ 1; it follows that L(z) has no roots in

LEMMA A.2. The values of the sequence haij derived from uzu # 1.
(12) are negative and the series oy

i52 uaiu is convergent, under
the condition that the response function f(t) is increasing The following examples show that the conditions a2 ? 0,
and bounded. a3 ? 0 in (47) and ai ? 21 in (48) are necessary.

THEOREM A.3. Suppose that the power series (41) has a EXAMPLE 1. Let a2 5 21/2, a3 5 0, a4 5 21/2, and ai

convergence radius r . 1 and that ai # 0. Then, we have the 5 0 ;i $ 5; we have that oy
i52 uaiu 5 1, but, however, the

sufficient conditions for the convergence of the series (26) as function

L(z) 5 1 1 z/2 1 z3/2 (53)Oy
i52

uaiu , 1; (46)

has a root z 5 21.
or

EXAMPLE 2. Let a2 5 21, a3 5 21/2, a4 5 21/2, and
ai 5 0 ;i $ 5; we have that the sequence ai is increasing;Oy

i52

uaiu 5 1, a2 ? 0, a3 ? 0; (47) however, function

L(z) 5 1 1 z 1 z2/2 1 z3/2 (54)
or

21 , ai # ai11 # 0 ;i $ 2. (48)
has a root z 5 21.

Proof. On the basis of Theorem A.1, it is sufficient to check
APPENDIX B: NOMENCLATUREuL(z)u . 0 in the closed region uzu # 1. Let uzu # 1, then

q(t): unknown function to be estimated
z(t): observed measurement dataUL(z)u $ u1 2 Oy

i52

uaiuuzui21U . (49) f(t): response function
h: time discretization step for q(t)
t : length of sliding time horizon

Therefore, uL(z)u . 0 when the condition (46) holds. E(t, h): indication function of stability
Let condition (47) hold. Suppose that L(z) has a root z0 in c: weighting value determined by f(t)

uzu # 1; we have ai: sequence define by eq. (12)
di: weighted observation data
Xi: sequence define by eq. (16)z0 Oy

i52

aizi22
0 5 1. (50)

hmax: upper bound of h for stability
tmin: lower bound of t for stability

On the other hand, z: complex variable
G(z): power series defined by (42)
L(z): power series defined by (41)Uz0 Oy

i52

aizi22
0 U# uz0u Oy

i52

uaizi22
0 u # Oy

i52

uaiu # 1. (51) r : ratio t/h, i.e., number of future informations
Em: numerical infinity
i: index of sequence in the SFSMsThen uz0u 5 1 and
F: direct mapping to be inversed
x(t): unit step functionUOy

i52

aizi22
0 U5 Oy

i52

uaizi22
0 u. (52) B: Beck inverse solution mapping

Vs: stable domain
Vu: unstable domain.

Thus, the nonzero values of the complex numbers aizi22
0 must

have the same angle. Since a2 ? 0 and a3 ? 0, we obtain that
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